Formulae for Reference

\[
\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B
\]

\[
\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B
\]

\[
\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\]

\[
2 \sin A \cos B = \sin(A + B) + \sin(A - B)
\]

\[
2 \cos A \cos B = \cos(A + B) + \cos(A - B)
\]

\[
2 \sin A \sin B = \cos(A - B) - \cos(A + B)
\]

\[
\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}
\]

\[
\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}
\]

\[
\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}
\]

\[
\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}
\]
Section A

This part contains 62 marks.

1) Find:

a) \(\int \cos(3x + 1) \, dx \)

b) \(\int (2 - x)^{2004} \, dx \)

(4 marks)

Answer:

a) \(\int \cos(3x + 1) \, dx = \frac{1}{3} \sin (3x + 1) + c \)

b)

\[
\begin{align*}
\int (2 - x)^{2004} \, dx &= \int (x - 2)^{2004} \, dx \\
&= \frac{(x - 2)^{2005}}{2005} + c
\end{align*}
\]

2a) Expand \((1 + 2x)^6\) in ascending powers of \(x\) up to the term \(x^3\).

b) Find the constant term in the expansion of \((1 - \frac{1}{x} + \frac{1}{x^2}) (1 + 2x)^6 \).

(4 marks)

Answer:

a)

\[
(1 + 2x)^6 = 1 + 6(2x) + 15(2x)^2 + 20(2x)^3 + \ldots
\]

\[= 1 + 12x + 60x^2 + 120x^3 + \ldots
\]

b)

\[
(1 - \frac{1}{x} + \frac{1}{x^2})(1 + 2x)^6
\]

\[= \left(1 - \frac{1}{x} + \frac{1}{x^2}\right)(1 + 12x + 60x^2 + 120x^3 + \ldots)
\]

\[= 1 - 12 + 60 + \ldots
\]

\[= 49 + \ldots
\]

\[\therefore\] The constant term is 49.
3) The slope at any point \((x, y)\) of a curve \(C\) is given by \(\frac{dy}{dx} = 3x^2 + 1\). If the \(x\)-intercept of \(C\) is 1, find the equation of \(C\). (4 marks)

Answer:

Let the curve \(C\) be \(y = y(x)\).

Since the \(x\)-intercept of \(C\) is 1, we have \(y(0) = 1\).

\[\therefore \frac{dy}{dx} = 3x^2 + 1 \]

\[\therefore y(x) = \int \frac{dy}{dx} \, dx \]

\[= \int 3x^2 + 1 \, dx \]

\[= x^3 + x + c \]

But \(y(0) = 1\)

\[\therefore c = 1 \]

\[\therefore y(x) = x^3 + x + 1 \]

\(\therefore\) The equation of \(C\) is \(y = x^3 + x + 1\).

4)

In Figure 1, the shaded region is bounded by the circle \(x^2 + y^2 = 9\), the \(x\)-axis, the \(y\)-axis and the line \(y = 2\). Find the volume of the solid generated by revolving the region about the \(y\)-axis. (4 marks)
The equation of the circle in quadrant I is \(x = \sqrt{9 - y^2} \)

\[\therefore \text{ The volume of the solid} \]

\[= \int_0^2 \pi \left(\sqrt{9 - y^2} \right)^2 \, dy \]

\[= \pi \int_0^2 (9 - y^2) \, dy \]

\[= \pi \left(9 - \frac{4}{3} \right) \]

\[= 4\pi \]

5) Find the general solution of the equation

\[\sin 3x + \sin x = \cos x. \]

Answer:

\[\sin 3x + \sin x = \cos x \]

\[2 \sin 2x \cos x = \cos x \]

\[\sin 4x = \cos x \]

\[\cos x = \cos \left(\frac{\pi}{2} - 4x \right) \]

\[\therefore \quad x = 2n\pi \pm \left(\frac{\pi}{2} - 4x \right) \quad \text{for some integer } n \]

\[x = 2n\pi \pm \frac{\pi}{3} \mp 4x \]

\[\therefore \quad 5x = 2n\pi + \frac{\pi}{3} \quad \text{or} \quad -3x = 2n\pi - \frac{\pi}{3} \]

\[\therefore \quad x = \frac{\pi}{15} + \frac{\pi}{3} n\pi \quad \text{or} \quad x = \frac{\pi}{6} - \frac{\pi}{3} n\pi \]

6)

In Figure 2, \(OAB \) is a triangle. \(C \) is a point on \(AB \) such that \(AC : CB = 1 : 2 \). Let \(\overrightarrow{OA} = \mathbf{a} \) and \(\overrightarrow{OB} = \mathbf{b} \).

a) Express \(\overrightarrow{OC} \) in terms of \(\mathbf{a} \) and \(\mathbf{b} \).
b) If \(|a| = 1, |b| = 2\) and \(\angle AOB = \frac{2\pi}{3}\), find \(|\overrightarrow{OC}|\).

Answer:

a) \(
\overrightarrow{OC} = \frac{b + 2a}{1 + 2} = \frac{2}{3}a + \frac{1}{3}b
\)

b)

\[
|\overrightarrow{OC}| = \sqrt{\overrightarrow{OC} \cdot \overrightarrow{OC}}
\]

\[
= \sqrt{\left(\frac{2}{3}a + \frac{1}{3}b\right) \cdot \left(\frac{2}{3}a + \frac{1}{3}b\right)}
\]

\[
= \sqrt{\frac{4}{9}|a|^2 + \frac{1}{9}|b|^2 + \frac{2}{9}a \cdot b}
\]

\[
= \sqrt{\frac{4}{9} + \frac{4}{9}|a||b|\cos \frac{2\pi}{3}}
\]

\[
= \sqrt{\frac{4}{9} + \frac{4}{9}(2)(-\frac{1}{2})}
\]

\[
= \sqrt{\frac{4}{9}}
\]

\[
= \frac{2}{3}
\]

7) Prove that \(9^n - 1\) is divisible by 9 for all positive integers \(n\).

Answer:

Let \(S(n)\) be the statement that “\(9^n - 1\) is divisible by 8”.

When \(n = 1\),

\(9^1 - 1 = 8\), which is divisible by 8

\(\therefore S(1)\) is true

Assume \(S(k)\) is true, i.e., \(9^k - 1 = 8m\) for some integer \(m\)

When \(n = k + 1\),

\(9^{k+1} - 1 = 9(9^k - 1) + 9 - 1\)

\[= 9(8m) + 8\]

\[= 8(9m + 1), \text{ which is divisible by 8}\]

\(\therefore S(k + 1)\) is true

\(\therefore S(n)\) is true for all positive integers \(n\).

8) Solve the following equations:

a) \(|x - 3| = 1\)

b) \(|x - 1| = |x^2 - 4x + 3|\)

(6 marks)
Answer:

a)
\[|x - 3| = 1 \]
\[\therefore \quad x - 3 = 1 \quad \text{or} \quad x - 3 = -1 \]
\[\therefore \quad x = 4 \text{ or } 2 \]

b)
\[|x - 1| = |x^2 - 4x + 3| \]
\[|x - 1| = |x - 1||x - 3| \]
\[0 = |x - 1||x - 3| - 1 \]
\[\therefore \quad |x - 1| = 0 \quad \text{or} \quad |x - 3| = 1 \]
\[\therefore \quad x = 1 \quad \text{or} \quad x = 2 \text{ or } 4 \quad \text{(by (a))} \]
\[\therefore \quad x = 1, 2 \text{ or } 4 \]

9)

In Figure 3, \(P(a, b) \) is a point of the curve \(C: y = x^3 \). The tangent to \(C \) at \(P \) passes through the point \((0, 2)\).

a) Show that \(b = 3a^3 + 2 \)

a) Find the values of \(a \) and \(b \).

(6 marks)
Answer:

a)
Let the tangent be \(y = mx + 2 \)
\[m = y'(a) \]
\[= 3a^2 \]
\[\therefore b = (3a^2)(a) + 2 \]
\[= 3a^3 + 2 \]

b)
\[\because P \text{ is on } C \]
\[\therefore b = a^3 \]
But we also have \(b = 3a^3 + 2 \)
\[\therefore a^3 = 3a^3 + 2 \]
\[-2a^3 = 2 \]
\[a = -1 \]
\[\therefore b = (1)^3 = -1 \]

10) Let \(O \) be the origin and \(A \) be the point \((3, 4)\). \(P \) is a variable point such that the area of \(\Delta OPA \) is always equal to 2.
Show that the locus of \(P \) is a pair of parallel lines.
Find the distance between these two lines.

(6 marks)

Answer:

Let the coordinates of \(P \) be \((x, y)\)
\[\therefore \frac{1}{2} \begin{vmatrix} 0 & 0 \\ 3 & 4 \\ x & y \\ 0 & 0 \end{vmatrix} = 2 \]
\[\begin{vmatrix} 3y - 4x \end{vmatrix} = 4 \]
\[\therefore 3y - 4x = \pm 4 \]
\[\therefore 4x - 3y \pm 4 = 0 \] is the locus of \(P \), which is a pair of parallel lines.

The distance between these two lines
\[= \frac{4 - (-4)}{\sqrt{4^2 + (-3)^2}} \]
\[= \frac{8}{5} \]
In Figure 4, $OABC$ is a pyramid such that $OA = 3$, $OB = 5$, $BC = 12$, $\angle AOC = 120^\circ$ and $\angle OAB = \angle OBC = 90^\circ$.

a) Find AC.

b) A student says that the angle between planes OBC and ABC can be represented by $\angle OBA$.

Determine whether the student is correct or not.

(6 marks)

Answer:

a)

In $\triangle OBC$,

$$OC = \sqrt{5^2 + 12^2} = 13$$

In $\triangle OAC$,

$$AC = \sqrt{3^2 + 13^2 - 2(3)(13)\cos 120^\circ} \quad \text{(cosine law)}$$

$$= \sqrt{178 + 39}$$

$$= \sqrt{217} \approx 14.7$$

b)

No.

The angle between the two planes can be represented by $\angle OBA$ if and only if $\angle ABC$ is a right angle.

But since:

$$AB^2 + BC^2 = (5^2 - 3^2) + 12^2$$

$$= 160$$

$$\neq AC^2$$
Therefore, by converse of Pythagoras’ theorem, $\angle ABC$ is not right. This means the angle between OBC and ABC cannot be represented by $\angle OBA$.

12)

Figure 5 shows two lines L_1: $y = -x + c$ and L_2: $y = 2x$, where $c > 0$. The two lines intersect at point P.

a) Let θ be the acute angle between L_1 and L_2. Find $\tan \theta$.

b) L_1 intersects the x- and y-axes at points A and B respectively. Find $AP : PB$.

(7 marks)

Answer:

a) $\tan \theta = \frac{2 - (-1)}{1 + (-1)(2)} = \frac{3}{-1} = -3$

b)
Coordinates of $B = (c, 0)$
Coordinates of $A = (0, c)$

Sub L_2 into L_1:

$$2x = -x + c$$

$$x = \frac{c}{3}$$

$\therefore L_2$:

$$y = 2x = \frac{2c}{3}$$

\therefore Coordinates of $P = \left(\frac{c}{3}, \frac{2c}{3} \right)$

\therefore

$$\frac{AP}{PB} = \frac{\sqrt{(c - \frac{2c}{3})^2 + \left(\frac{2c}{3}\right)^2}}{\sqrt{(c - \frac{c}{3})^2 + \left(\frac{2c}{3}\right)^2}}$$

$$= \frac{2\left(\frac{c}{3}\right)^2}{2\left(\frac{c}{3}\right)^2}$$

$$= \frac{1}{4}$$

$\therefore AP : PB = 1 : 4$
Section B
This part contains 48 marks.
Only four questions are needed to be answered.

13) In Figure 6, OABC and ODEF are two squares such that OA = 1, OF = 2 and ∠COD = θ, where 0° < θ < 90°. Let \(\overrightarrow{OD} = 2\mathbf{i} \) and \(\overrightarrow{OF} = -2\mathbf{j} \), where \(\mathbf{i} \) and \(\mathbf{j} \) are two perpendicular unit vectors.

 a) i) Express \(\overrightarrow{OC} \) and \(\overrightarrow{OA} \) in terms of \(\theta \), \(\mathbf{i} \) and \(\mathbf{j} \).

 ii) Show that \(\overrightarrow{AD} = (2 + \sin \theta)\mathbf{i} - \cos \theta\mathbf{j} \)

b) Show that \(\overrightarrow{AD} \) is always perpendicular to \(\overrightarrow{FC} \).

 c) Find the value(s) of \(\theta \) such that the points B, C and E are collinear. Give your answer(s) correct to the nearest degree.
Answer:

ai) Let \(\overrightarrow{OC} = ai + bj \), where \(a, b > 0 \).
\[
\begin{align*}
 a^2 + b^2 &= 1 \quad \text{...(1)} \\
 \frac{b}{a} &= \tan \theta \quad \text{...(2)}
\end{align*}
\]
Sub (2) into (1):
\[
\begin{align*}
 a^2 + a^2 \tan^2 \theta &= 1 \\
 a^2 \sec^2 \theta &= 1 \\
 a &= \cos \theta
\end{align*}
\]
∴ (2):
\[
 b = \sin \theta
\]
∴ \(\overrightarrow{OC} = \cos \theta \hat{i} + \sin \theta \hat{j} \)

Let \(\overrightarrow{OA} = ci + dj \), where \(c < 0 \) and \(d > 0 \).
\[
\begin{align*}
 c^2 + d^2 &= 1 \quad \text{...(3)} \\
 \frac{d}{c} &= \tan(90^\circ + \theta) \quad \text{...(4)}
\end{align*}
\]
Sub (4) into (3):
\[
\begin{align*}
 c^2 + c^2 \cot^2 \theta &= 1 \\
 c^2 \csc^2 \theta &= 1 \\
 c &= -\sin \theta
\end{align*}
\]
∴ (4):
\[
 d = -\sin \theta (-\cot \theta) = \cos \theta
\]
∴ \(\overrightarrow{OA} = -\sin \theta \hat{i} + \cos \theta \hat{j} \)

ii)
\[
\begin{align*}
 \overrightarrow{AD} &= \overrightarrow{OD} - \overrightarrow{OA} \\
 &= 2\hat{i} - (\sin \theta \hat{i} - \cos \theta \hat{j}) \\
 &= (2 + \sin \theta) \hat{i} - \cos \theta \hat{j}
\end{align*}
\]
b)
\[\overrightarrow{FC} = \overrightarrow{OC} - \overrightarrow{OF} \]
\[= \cos \theta \mathbf{i} + \sin \theta \mathbf{j} + 2 \mathbf{j} \]
\[= \cos \theta \mathbf{i} + (2 + \sin \theta) \mathbf{j} \]
\[\therefore \overrightarrow{AD} \cdot \overrightarrow{FC} = \left((2 + \sin \theta) \mathbf{i} - \cos \theta \mathbf{j} \right) \cdot \left(\cos \theta \mathbf{i} + (2 + \sin \theta) \mathbf{j} \right) \]
\[= (2 + \sin \theta) \cos \theta - \cos \theta (2 + \sin \theta) \]
\[= 0 \]
\[\therefore \overrightarrow{AD} \perp \overrightarrow{FC} \]

e)
\[\overrightarrow{CE} = \overrightarrow{OE} - \overrightarrow{OC} \]
\[= 2 \mathbf{i} - 2 \mathbf{j} - \cos \theta \mathbf{i} - \sin \theta \mathbf{j} \]
\[= (2 - \cos \theta) \mathbf{i} - (2 + \sin \theta) \mathbf{j} \]
\[\overrightarrow{CB} = \overrightarrow{OA} \]
\[= -\sin \theta \mathbf{i} + \cos \theta \mathbf{j} \]
\[\therefore B, C, E \text{ are collinear} \]
\[\therefore \overrightarrow{CE} = k \overrightarrow{CB} \text{ for some constant } k \]
\[\begin{cases}
2 - \cos \theta = -k \sin \theta \\
2 + \sin \theta = -k \cos \theta
\end{cases} \quad ...(1) \]
\[\begin{cases}
2 - \cos \theta = -k \sin \theta \\
2 + \sin \theta = -k \cos \theta
\end{cases} \quad ...(2) \]
\[\frac{(1)}{(2)}:\]
\[\frac{\sin \theta}{\cos \theta} = \frac{2 - \cos \theta}{2 + \sin \theta} \]
\[2 \sin \theta + \sin^2 \theta = 2 \cos \theta - \cos^2 \theta \]
\[1 = 2(\cos \theta - \sin \theta) \]
\[\frac{1}{2} = \sqrt{2} \cos (\theta + 45^\circ) \]
\[\cos (\theta + 45^\circ) = \frac{1}{\sqrt{2}} \]
\[\therefore \theta + 45^\circ = 69.2952^\circ \text{ or } 290.7048^\circ \text{ (rejected) } \]
\[\therefore \theta = 24^\circ \quad (\text{cor. to nearest degree}) \]

14) \(C_1 \) and \(C_2 \) are circles \(x^2 + y^2 = 36 \) and \(x^2 + y^2 - 10x + 16 = 0 \) respectively.

a) i) Show that, for all values of \(\theta \), the variable point \(P \) \((6 \cos \theta, 6 \sin \theta) \) always lies on \(C_1 \).
ii) Find, in terms of \(\theta \), the equation of the tangent to \(C_1 \) at \(P \) \((6 \cos \theta, 6 \sin \theta) \).

(3 marks)
b) Let L be the common tangent to C_1 and C_2 with positive slope (See Figure 7)

i) Using (a), or otherwise, find the equation of L.

ii) It is known that C_1 and C_2 intersect at two distinct points Q and R. A circle C_3, passing through Q and R, is bisected by L. Find the equation of C_3.

(9 marks)

Answer:

ai)
Sub P into C_1:

$LHS = (6\cos \theta)^2 + (6\sin \theta)^2$

$= 36$

$= RHS$

$\therefore P$ is on C_1.

ii)
The tangent:

$x(6\cos \theta) + y(6\sin \theta) - 36 = 0$

$x \cos \theta + y \sin \theta - 6 = 0$
Center of $C_2 = (5, 0)$
Radius of $C_2 = \frac{1}{2} \sqrt{(-10)^2 - 4(16)} = 3$

\[\therefore L \text{ is tangent to } C_1 \]
\[\therefore \text{Let the equation of } L \text{ be } x \cos \theta + y \sin \theta - 6 = 0 \]
\[\therefore L \text{ is tangent to } C_2 \]
\[\therefore \text{Radius of } C_2 = \text{Distance from center of } C_2 \text{ to } L \]
\[\therefore 3 = \frac{5 \cos \theta - 6}{\sqrt{\cos^2 \theta + \sin^2 \theta}} \]
\[\therefore \pm 3 = 5 \cos \theta - 6 \]
\[\therefore \cos \theta = \frac{3}{5} \text{ or } \frac{8}{5} \text{ (rejected)} \]
\[\therefore \text{Slope of } L > 0 \]
\[\therefore -\frac{\cos \theta}{\sin \theta} > 0 \]
\[\therefore \sin \theta < 0 \]
\[\therefore \sin \theta = -\sqrt{1 - \left(\frac{3}{5}\right)^2} = -\frac{4}{5} \]
\[\therefore L: \]
\[\frac{3}{5} x - \frac{4}{5} y - 6 = 0 \]
\[3x - 4y - 30 = 0 // \]
ii) The family of circles passing through Q and R:
\[k(x^2 + y^2 - 36) + (x^2 + y^2 - 10x + 16) = 0 \]
\[(1 + k)x^2 + (1 + k)y^2 - 10x + (16 - 36k) = 0 \]
Where k is an arbitrary constant
\[\therefore C_3 \text{ is in this family} \]

\[\therefore L \text{ bisects } C_3 \]
\[\therefore \text{Center of } C_3 \text{ is on } L \]
\[\therefore \left(\frac{5}{1+k}, 0 \right) \text{ is on } L \]
\[\therefore 3 \left(\frac{5}{1+k} \right) - 30 = 0 \]
\[\frac{5}{1+k} = 10 \]
\[k = -\frac{1}{2} \]
\[\therefore C_3 : \]
\[(1 - \frac{1}{2})x^2 + (1 - \frac{1}{2})y^2 - 10x + (16 + 36(\frac{1}{2})) = 0 \]
\[\frac{1}{2}x^2 + \frac{1}{2}y^2 - 10x + 34 = 0 \]
\[x^2 + y^2 - 20x + 68 = 0 \]

15) Given two curves $C_1: y = f(x)$, where $f(x)$ is a quadratic function, and
$C_2 : y = -\frac{1}{5} x^2 - \left(\frac{h - 20}{10} \right) x + h.$
C_1 has the vertex $(4, 9)$ and passes through the point $(10, 0)$.

a) Show that $f(x) = -\frac{1}{5} x^2 + 2x + 5$.

b) i) Show that C_2 also passes through the point $(10, 0)$
ii) If C_1 and C_2 meet at two points, find, in terms of h, the x-coordinate of the point other than $(10, 0)$.
c) Figure 8 shows a fountain. A vertical water pipe OP of height 15 units is installed on the horizontal ground. Two streams of water are ejected continuously from two small holes D_1 and D_2 in the pipe, with D_2 above D_1. The two streams of water lay in the same vertical plane. A rectangular coordinate system is introduced in this plane, with O as the origin and OP on the positive y-axis. The formula is designed such that the stream of water ejected from D_1 lies on the curve C_1, and that ejected from D_2 lies on C_2.

i) Find OD_1.

ii) If the two streams of water do not cross each other in the air before meeting at the same point on the ground, find the range of possible values of OD_2.

(4 marks)
Answer:

a)
\[\therefore C_1 \text{ has the vertex } (4,9) \]
\[\therefore C_1 \text{ is symmetric about } x = 4 \]
\[\therefore C_1 \text{ also passes through } (2(4) - 10, 0) = (-2, 0) \]

Let \(C_3 \) be the curve \(y = g(x) \) such that \(g(x) = -\frac{1}{4}x^2 + 2x + 5 \)
\[\therefore g(4) = -\frac{1}{4}(4)^2 + 2(4) + 5 = 9 \]
and \(g(10) = -\frac{1}{4}(10)^2 + 2(10) + 5 = 0 \)
and \(g(-2) = -\frac{1}{4}(-2)^2 + 2(-2) + 5 = 0 \)
\[\therefore C_3 \text{ passes through } (4,9), (10,0) \text{ and } (-2,0) \]
But since a quadratic function curve that passes through three given general points is unique
\[\therefore C_1 \text{ and } C_3 \text{ is the same curve} \]
\[\therefore f(x) = g(x) = -\frac{1}{4}x^2 + 2x + 5 \]

b)
When \(x = 10, C_2 : \)
\[y = -\frac{1}{5}(10)^2 - \left(\frac{h - 20}{10} \right)(10) + h \]
\[y = -20 - h + 20 + h \]
\[y = 0 \]
\[\therefore C_2 \text{ also passes through } (10,0) \]
ii)

∴ C_1 and C_2 meet at two points

$$\therefore -\frac{1}{4}x^2 + 2x + 5 = -\frac{1}{5}x^2 - \left(\frac{h - 20}{10}\right)x + h$$

$$\frac{1}{20}x^2 - \frac{h}{10}x + (h - 5) = 0$$

$$\therefore x = \frac{\frac{h}{10} \pm \sqrt{\left(\frac{h}{10}\right)^2 - 4\left(\frac{1}{20}\right)(h - 5)}}{2\left(\frac{1}{20}\right)}$$

$$= \frac{\frac{h}{10} \pm \sqrt{\frac{h^2}{100} - \frac{1}{2}} + 1}{\frac{1}{10}}$$

$$= h \pm \sqrt{(h - 10)^2}$$

$$\therefore x = h + h - 10 \quad \text{or} \quad x = h - h + 10 \quad \text{(rejected} \therefore x \neq 10)$$

$$= 2h - 10$$

∴ The x-coordinate of the point is $2h - 10$.

ci)

$OD_1 = y$-intercept of C_1

$$= 5$$

ii)

$OD_2 = y$-intercept of $C_2 = h$

∴ D_2 is above D_1 and D_2 is on OP

∴ $OD_1 < OD_2 < OP$

∴ $5 < h < 15 \quad \text{...(*)}$

∴ C_1 do not cross each other in the air

∴ The the other intersection of C_1 and C_2 should be on the right of $(10,0)$

∴ $2h - 10 > 10$

$$2h > 20$$

$$h > 10$$

∴ $(*)$:

$$10 < h < 15$$

∴ Range of OD_2 is $10 < OD_2 < 15$.
In Figure 9, \(ABCD\) is a quadrilateral inscribed in a circle centered at \(O\) and with radius \(r\), such that \(AB \parallel DC\) and \(O\) lies inside the quadrilateral. Let \(\angle COD = 2\theta\) and reflex \(\angle AOB = 2\beta\), where \(0 < \theta < \frac{\pi}{2} < \beta < \pi\). Point \(E\) denotes the foot of perpendicular from \(O\) to \(DC\). Let \(S\) be the area of \(ABCD\).

a) Show that
\[S = \frac{r^2}{4} \left(\sin 2\theta - \sin 2\beta + 2 \sin (\beta - \theta) \right). \]

(3 marks)

b) Suppose \(\beta\) is fixed. Let \(S_\beta\) be the greatest value of \(S\) as \(\theta\) varies.

Show that
\[S_\beta = 2r^2 \sin^3 \frac{2\beta}{3} \] and the corresponding value of \(\theta\) is \(\frac{\beta}{3}\).

[Hint: You may use the identity \(\sin 3a = 3 \sin a - 4 \sin^3 a\).]

(6 marks)

c) A student says:
Among all possible values of \(\beta\), the quadrilateral \(ABCD\) becomes a square when \(S_\beta\) in (b) attains its greatest value.
Determine whether the student is correct or not.

(3 marks)
Answer:

a)
\[\angle AOB = 2\pi - 2\beta \]

\[\therefore \text{Area of } \triangle AOB = \frac{1}{2} r^2 \sin (2\pi - 2\beta) = -\frac{1}{2} r^2 \sin 2\beta \]

Area of \(\triangle AOD = \frac{1}{2} r^2 \sin (\beta - \theta) \)

Area of \(\triangle BOC = \frac{1}{2} r^2 \sin (\beta - \theta) \)

Area of \(\triangle DOC = \frac{1}{2} r^2 \sin 2\theta \)

\[\therefore S = -\frac{1}{2} r^2 \sin 2\beta + \frac{1}{2} r^2 \sin (\beta - \theta) + \frac{1}{2} r^2 \sin (\beta - \theta) + \frac{1}{2} r^2 \sin 2\theta \]

\[= \frac{1}{2} (\sin 2\theta - \sin 2\beta + 2\sin (\beta - \theta)) \]

b)
Let \(S(\theta) \) be the value of \(S \) with fixed \(\beta \) and the corresponding \(\theta \)

\[\therefore S'(\theta) = \frac{d}{d\theta} \left(\frac{r^2}{2} (\sin 2\theta - \sin 2\beta + 2\sin (\beta - \theta)) \right) \]

\[= \frac{d}{d\theta} \left(\frac{r^2 \sin 2\theta}{2} - \frac{r^2 \sin 2\beta}{2} + r^2 \sin (\beta - \theta) \right) \]

\[= \frac{2r^3 \cos 2\theta}{2} - r^2 \cos (\beta - \theta) \]

\[= r^2 (\cos 2\theta - \cos (\beta - \theta)) \]

\[S''(\theta) = \frac{d}{d\theta} \left(r^2 (\cos 2\theta - \cos (\beta - \theta)) \right) \]

\[= -2r^2 \sin 2\theta - r^2 \sin (\beta - \theta) \]

\[= -r^2 (2 \sin 2\theta + \sin (\beta - \theta)) \]
\[S(\theta) \text{ attains is maximum when } S'(\theta) = 0 \text{ and } S''(\theta) < 0 \]

\[0 = r^2 \left(\cos 2\theta - \cos (\beta - \theta) \right) \]

\[\cos 2\theta = \cos (\beta - \theta) \]

\[2\theta = \beta - \theta \quad (\theta < \pi) \]

\[\theta = \frac{\beta}{3} \]

\[S'' \left(\frac{\beta}{3} \right) = -r^2 \left(2 \sin \frac{2\beta}{3} + \sin (\beta - \frac{\pi}{2}) \right) \]

\[= -3r^2 \sin \frac{2\beta}{3} \]

\[\therefore \frac{\pi}{2} < \beta < \pi \]

\[\frac{\pi}{3} < \frac{2\beta}{3} < \frac{2\pi}{3}, \text{ i.e., } \frac{2\beta}{3} \text{ is in quadrant I} \]

\[\therefore \sin \frac{2\beta}{3} > 0 \]

\[\therefore S'' \left(\frac{\beta}{3} \right) < 0 \]

\[\therefore S \text{ is maximum when } \theta = \frac{\beta}{3} \]

\[S_{\beta} = \frac{\nu^{2}}{2} \left(\sin 2\theta - \sin 2\beta + 2 \sin (\beta - \theta) \right) \]

\[= \frac{\nu^{2}}{2} \left(\sin 2\theta - \sin 6\theta + 2 \sin 2\theta \right) \]

\[= \frac{\nu^{2}}{2} \left(3 \sin 2\theta - 3 \sin 2\theta + 4 \sin^3 2\theta \right) \]

\[= 2r^2 \sin^3 2\theta \]

\[= 2r^2 \sin^3 \frac{2\beta}{3} \]

c)

Yes.

\[S_{\beta} \text{ is maximum when } \sin^3 \frac{2\beta}{3} = 1 \]

\[\therefore \text{The corresponding value of } \frac{2\beta}{3} = \frac{\pi}{2} \]

\[\therefore \beta = \frac{\pi}{4} \]

\[\therefore \theta = \frac{\beta}{3} = \frac{\pi}{6} \]

\[\therefore \angle DOC = \frac{\pi}{2} \]

\[\therefore BOD \text{ and } AOC \text{ are perpendicular straight lines} \]

But \[BOC = AOC = 2r \]

\[\therefore ABCD \text{ is a square} \]

17a) Let \(y = (x - \pi) \sin x + \cos x \).

i) \[\text{Show that } \frac{dy}{dx} = (x - \pi) \cos x \]

Hence find \[\int (x - \pi) \cos x \, dx. \]
ii) Figure 10 shows the graphs of $y = (x - \pi) \sin x + \cos x$ for $0 \leq x \leq \frac{3\pi}{2}$.

\[y = (x - \pi) \cos x \]

![Figure 10](image)

1) Find the areas of the two shaded regions R_1 and R_2 as shown in Figure 10.

2) Find $\int_{\pi/2}^{3\pi/2} (x - \pi) \cos x \, dx$ \hspace{1cm} (7 marks)

b)

Let $f(x)$ be a continuous function. Figure 11 shows a sketch of the graph of $y = f'(x)$ for $0 \leq x \leq x_4$. It is known that the areas of the shaded regions S_1 and S_2 as shown in Figure 11 are equal.

i) Show that $f(x_1) = f(x_3)$

ii) Furthermore, $f(0) = f(x_4) = 0$ and $f(x) \neq 0$ for $0 < x < x_4$. In Figure 12, draw a sketch of the graph of $y = f(x)$ for $0 \leq x \leq x_4$. \hspace{1cm} (5 marks)
\textbf{Answer:}
\begin{enumerate}
\item \(\frac{dy}{dx} = \frac{d}{dx} \left((x - \pi) \sin x + \cos x \right) \)
\[= \frac{d}{dx} \left((x - \pi) \sin x \right) - \sin x \]
\[= (x - \pi) \cos x + \sin x - \sin x \]
\[= (x - \pi) \cos x, \]
\[\therefore \int (x - \pi) \cos x \, dx = \int \frac{dy}{dx} \, dx \]
\[= y + C \]
\[= (x - \pi) \sin x + \cos x + C \quad \text{for some constant } C_i \]
\item \(R_1 = \int_{\pi/2}^{\pi} (x - \pi) \cos x \, dx \)
\[= (x - \pi) \sin x + \cos x \bigg|_{\pi/2}^{\pi} \]
\[= \cos \pi + \frac{\pi}{2} \sin \frac{\pi}{2} - \cos \frac{\pi}{2} \]
\[= -1 + \frac{\pi}{2} - 0 \]
\[= \frac{\pi}{2} - 1_i \]
\[R_2 = \left| \int_{\pi}^{3\pi/2} (x - \pi) \cos x \, dx \right| \]
\[= \left| (x - \pi) \sin x + \cos x \right|_{\pi}^{3\pi/2} \]
\[= \frac{3\pi}{2} \sin \frac{3\pi}{2} + \cos 3\pi - \cos \pi \]
\[= -\frac{3\pi}{2} + 0 - 1 \]
\[= -\frac{3\pi}{2} - 1 \]
\[= \frac{\pi}{2} - 1_i \]
\item \[\int_{\pi/2}^{3\pi/2} (x - \pi) \cos x \, dx = \int_{\pi/2}^{\pi} (x - \pi) \cos x \, dx + \int_{\pi}^{3\pi/2} (x - \pi) \cos x \, dx \]
\[= \frac{\pi}{2} - 1 + 1 - \frac{\pi}{2} \]
\[= 0_i \]
\end{enumerate}
i) $S_1 = S_2$

\[\int_{x_1}^{x_2} f'(x) \, dx = -\int_{x_2}^{x_3} f'(x) \, dx \]
\[f(x_2) - f(x_1) = -f(x_3) + f(x_2) \]
\[f(x_1) = f(x_3) \]

ii) $f(x) = f(x_\parallel)$

Figure 12